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Summagx.

Estimation is considered in a model where both the mean vector
and the dispersion matrix have linear decompositions. It is shown that
after an invariance reduction with respect to mean translation, MINQUE
provides a nonnegative definite estimate of the dispersion matrix, when
the decomposing matrices span a quadratic subspace of symmetric matrices.
With normality, MINQUE is seen to equal the restricted maximum likelihood

estimate and to be of uniformly minimum variance.
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1. Introduction. Consider independent and identically distributed

n .
random R —vectors gu ; 0 =1,...,N, with common mean vector Eﬁ“lbﬁéﬂ

. . . k .
and common dispersion matrix ZK tKyK, where interest concentrates on

=1
estimating the vector t := (tl, .oy tk)‘ of dispersion coefficients,
Various procedures have been discussed in the literature. Among those
are: (i) mminimum norm unbiased guadratic invariant estimation
(MINQUE, C.R. Rao [ 8, p. 302]), and, under norﬁality, {ii) uniform
minimum variance unbiased invariant estimation (UMVU, Seely [ 9]}, and
(iii) restricted (by invariance) maximum likelihood estimation (REML,
Corbeil & Searle [ 2]). 1In this paper invariance is to be understood
with respect to the group of all mean translations

D

{Z->Z + EbTr x | (b, «eey bp)' € R®

1 }, a maximal invariant statistic
b

being Ez where M projects orthogonally onto the orthogonal complement of
the space spanned by 51"'“" ép ; hence reduction by invariance yields
the residual vectors gga with mean 2 and dispersion matrix EtngKg .

Our main result may be roughly summarized as follows: If estimates
according to each of the three procedures above exist, then they coincide,
and the common estimate é yields a nonnegative definite estimate E%ngKg
of the dispersion matrix in the invariance reduced model. This holds
true for any finite samplesize N =2 v := rank M, in contrast to asymptotic
results on consistency as N + » , cf., Anderson [ 1].

In Section 2, the invariance reduced model is discussed in a normal

setting, and Section 3 is concerned with the linear model situation.



The vital assumption is the condition of Seely [ 9] that

Mylg, -+.s MV. M span a k-dimensional quadratic subspace B of symmetric

. . .. . 2
n x n matrices. The subspace B is quadratic if and only if A" € B
whenéver A€ B, i.e., B is closed under the multiplication

%{§§+§é). Jensen [ 4] points out that the latter property makes

T
Q
I
i

B into a k-dimensional special Jordan algebra, and we shall adopt this
more informative terminology. For a discussion with no initial invariance

reduction, see Gnot, Klonecki & Zmydlony [ 3].

2. The Normal Model. We will use the isomorphism vec that maps a

matrix into a vector by ordering its entries lexicographically, see

Pukelsheim | 7].

THEOREM 1. Consider independent and identically normally distri-
buted random Rv—vectors 5@ with common mean 0 and common dispersion
matrix EtKﬂK , where N 2 v . Assume that the k decomposing matrices
ﬂK span a k~dimensional special Jordan algebra B . Define G < Rk to
be the region of those values t of the dispersion parameter such that
EtKgK is positive definite, and assume G # § . Then:

(a) The maximum likelihood estimator for t € G is almost surely

equal to the uniform minimum variance unbiased estimator

to:= Qfg)_12'°vec§, where D := [Vechl T oae. 2 vecwk] , and
S ;=22 Z'/N .
23T SZ, B
(b) The estimated dispersion matrix W o= EtKw is nonnegative

definite; in fact, if the sample dispersion matrix S is positive definite,

= >

so is



Proof. (a) Since G is open and connected it is a region, and

its boundary 9G consists of those te Rk such that ZtKW is nonnegative
definite and singular. The sample dispersion matrix S is almost surely
positive definite. If t tends to aG, or HEH tends to « , the likelihood
function L tends to zero[1l, p. 5} . Since L is positive in G there
exists a maximum in G, and no maximum lies on the boundary 8G. Hence the

maximum likelihood estimate is a solution of the likelihood equations

= D'F "vecS ,

(1) L

ng
Ilw]
liet>

where the matrix of fourth moments

(2)

L]
I

I

1]E>

= (ZE W )IOEt W) .

If ¥ in (1) is put equal to g(go) for some given £ € G , then (1) is a

0
set of weighted normal equations, cf. [ 7, p. 628] , and hence yields a
minimum variance unbiased estimator for the vector parameter t . Since
the matrices W span a special Jordan algebra, there exists an

almost surely unique uniform minimum variance unbiased invariant estimator

which does not depend on the choice of t, € G . Thus
(3) t = (D'D) D'vecs ,

since G # @ implies the existence of a nonsingular matrix B € B, and so

B t e B and ;v -1 € B ; the matrix F in (1) may, therefore, be set

1l
e}

o
{{lvy)

equal to lvz =1

®
i



~

(b) As a linear operator on the space of symmetric matrices, t
is surjective and hence open, and so if for some positive definite
matrix §O the value E(go) & G , the same is true for an open

neighbourhood of S , i.e., for a set of positive Lebesgue measure.

0
This contradicts part (a) that £ maps into G almost surely. For a

singular sample dispersion matrix S, consider the limit §+—8£Vas €

tends to zero. Q.E.D.

Part (a)‘may also be obtained from a reparametrization by
9 = 6(t) , where the bijection § from G onto G sclves
EGK(E)W = (EtKﬂK)_l , as introduced by Seely [ 9, p. 715]. 1In this
case one obtains an exponential family in the vector parameter 2 and
standard theory applies, cf. Anderson {1] . A theorem proved by
Makelainen, Schmidt & Styan [ 6] may be used to obtain uniqueness of

the solution to the likelihood equations (1).

3. The Multivariate Linear Model. We now return to the linear, but

not necessarily normal, model discussed in Section 1.

THEOREM 2. Consider independent and identically distributed

n ,
random R ~-vectors Yu , o =1,...,N, with common mean vector Engw and
= =

common dispersion matrix EthK , where N 2 v = rank M . Assume that
the k matrices EYKM span a k-dimensional special Jordan algebra B that

contains M . Let Dy % [ veeMv M : ... :vecggkg]. Then the MINQUE

(4)

et
0
e}
o
o
<
o
Q
non



for t yields a nonnegative definite estimate EtKMng of the invariance

reduced dispersion matrix, this estimate being of rank v if

S := Egga(gga)'/N is of rank v .

Proof. It is easily checked that is the MINQUE in the enlarged

leh>

model [Zig el 2 Xﬁg]' ~ (0, EtKiﬁ@EYK§)° The rest will be proved

by reference to Theorem 1. Choose an nxv full rank v factor Q of M

14

i.e., M = 0QQ' and Q'Q = ;v i then Q'Y isanother maximal invariant
statistic [ 5, p. 707] . For the sole reason the proof, add a normality

assumption. Then Theorem 1 is applicable to Za := Q'XU , and vields

the same

flet>

as in (4); and the results on EEKQ'ZKQ imply the assertions

on E£KMV

==K

=

.  0.E.D.
If a normality assumption is added to Theorem 2, then using

Theorem 1, we obtain the following:

COROLLARY. If the common distribution of Y roeesY

Y, 4 is normal,

et >

then is the UMVU and REML estimate of t , as well as the MINQUE.

Examples may be found in Corbeil and -Searle [ 2]. 1In each one of
their four cases a special Jordan algebra is present: equality of MINQUE
(i.e., ANOVA estimators) and REML is implied by the Corollary and need
not be checked explicitly, nor need the likelihood equations be solved

iteratively.

4. Acknowledgements. This paper was presented at the Instytut Mate-

matyczny PAN, WrocY¥aw, by the first author, who would like to thank the

Polish Academy of Sciences for their kind invitation. The authors would



also like to thank T.W. Anderson, K. Conradsen, and H. Witting for
very helpful discussions. The second author's research was begun

while he was a Canada Council fellow at the University of Helsinki.

INSTITUT FﬁR.MATHEMATISCHE STOCHASTIK, ALBERT—LUDWIGS—UNIVERSITKT,
D-7800 FREIBURG IM BREISGAU, FEDERAL REPUBLIC OF GERMANY, AND DEPARTMENT
OF STATISTICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305, USA.

DEPARTMENT OF MATHEMATICS, McGILIL UNIVERSITY, MONTREAL, QUEBEC,

CANADA H3A 2K6.



REFERENCES

[1]

[2]

[3]

[4]

[5]

Le]

[7]

8]

[9]

T.W. Anderson, Estimation of covariance matrices which are
linear combinations or whose inverses are linear combi-
nations of given matrices, pp. 1-24 in: R.C. Bose, I.M.
Chakravarti, P.C. Mahalanobis, C.R. Rao & K.J.C. Smith
(eds.) , Essays in Probability and Statistics, Statistical
Publishing Society, Calcutta, 1969, and The University of
North Carolina Press, Chapel Hill, 1970.

R.R. Corbeil & S.R. Searle, A comparison of variance component
estimators, Biometrics gg (1976), 779-791,

S. Gnot, W. Klonecki & R. Zym&lony, Uniformly minimum variance
unbiased estimation in Euclidean vector spaces, Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24 (197a),
281-286. o

S5.T. Jensen, Covariance hypotheses which are linear in both the
covariance and the inverse covariance, Preprint 1975, No.l,
Institute of Mathematical Statistics, University of Copen-
hagen, Januvary 1975.

J. Kleffe, A note on MINQUE for normal models, Math. Operations—
forsch. Statist. Z (1976) , 707-714.

T. Mékeléinen, K. Schmidt & G.P.H. Styan, On the uniqueness of
the maximum likelihood estimator of a vector valued para-
meter, Discussion Paper No. 140, Indian Statistical
Institute, Delhi, 1976.

F. Pukelsheim, Estimating variance components in linear models,
J. Multivariate Anal. 6 (1976), 626-629.

C.R. Rao, Linear Statistical Inference and Its Applications,
Second Edition, John Wiley & Sons, New York, 1973.

J. Seely, Quadratic subspaces and completeness, BAnn. Math.
Statist. 42 (1971), 710-721.



10.

11.

12.

13.

1k,

15.

16.

TECHNICAL REPORTS

OFFICE OF NAVAL RESEARCH CONTRACT NOGOlkL-67-A-0112-0030 (NR-OL2-03h)

"Confidence Limits for the Expected Value of an Arbitrary Bounded Random
Variable with a Continuous Distribution Function," T. W. Anderson,
October 1, 1969.

"Efficient Estimation of Regression Coefficients in Time Series," T. W.
Anderson, October 1, 1970.

"Determining the Appropriate Sample Size for Confidence Limits for a
Proportion," T. W. Anderson and H. Burstein, October 15, 1970.

"Some General Results on Time-Ordered Classification," D. V. Hinkley,
July 30, 1971.

"Tests for Randomness of Directions against Equatorial and Bimodal
Alternatives," T. W. Anderson and M. A. Stephens, August 30, 1971.

"Estimation of Covariance Matrices with Linedar Structure and Moving
Average Processes of Finite Order," T. W. Anderson, October 29, 1971.

"The Stationarity of an Estimated Autoregressive Process," T. W.
Anderson, November 15, 1971. :

"On the Inverse of Some Covariance Matrices of Toeplitz Type," Raul
Pedro Mentz, July 12, 1972.

"An Asymptotic Expansion of the Distribution of "Studentized" Class-
ification Statistics,” T. W. Anderson, September 10, 1972.

"Asymptotic Evaluation of the Probabilities of Misclassification by
Linear Discriminant Functions,” T. W. Anderson, September 28, 1972.

"Population Mixing Models and Clustering Algorithms," Stanley L.
Sclove, February 1, 1973.

"Asymptotic Properties and Computation of Maximum Likelihood Estimates
in the Mixed Model of the Analysis of Variance," John James Mlller,
November 21, 1973.

"Maximum Likelihood Estimation in the Birth-and-Deeth Process," Niels
Keiding, November 28, 1973.

"Random Orthogonal Set Functions and Stochastic Models for the Gravity
Potential of the Earth," Steffen L. Lauritzen, December 27, 1973.

"Maximum Likelihood Estimation of Parameters of an Autoregressive
Process with Moving Average Residuals and Other Covariance Matrices
with Linear Structure,” T. W. Anderson, December, 1973.

"Note on a Case-Study in Box-Jenkins Seasonal Forecasting of Time Series,”

Steffen L. Lauritzen, April, 197k.



17.

138.

19.

20.

21.

22.

23.

2k,

25.

26.. .

28.

29,

30.

31,

32,

TECHNICAL REPORTS {(continued)

“General Exponential Models for Discrete Observations,"
Steffen L. Lauritzen, May, 1974,

"On the Inrerrelationships among Sufficiency, Total’Suffieiency aud
Some Related Concepts, Steffen L. Lauritzen, June, 1974.

"Statistical Inference for Multiply Truncated Power Series Distributions;"
T. Cacoullos, September 30, 1974.

Office of Naval Research Contract NOQO14~75-C-0442 (NR-042--034)

"Estimation by Maximum Likelihood in Autoregressive Moving Average llodels
1n‘the,Time and Frequency Domains," T. W. Anderson, June 1975.

"Asymptotlc Properties of Some Estimators in Moving Average Models,"
Raul Pedro Mentz, September 8, 1975.

"On a Spectral Estimate Obtained by an Autoregressive Model Fitting,"
Mitueki Huzii, February 1976.

"Estimating Means when Some Observations are Classified by Llnear
Discriminant Functlon, Chlen—Pai Han, April 1976. : ot

"Panels and Time Series Analysis: Markov Chains and Autoregressive
Processes,”. T. W. Anderson, July 1976 :

"Repeated Measurements on Autoregressive Processes, T. W. Anderson,
September 1976, ‘

"The Recurrence Classification of Risk and Storage Processes,"
J. Michael Harrison and Sidney I, Resnick September 1976,

"The Generalized Variance of a Staticonary Autoregressive Process,
T..W. Anderson and Raul P.Mentz, October 1976

"Estimation of the Parameters of Finite Location and ‘Scale Mixtures,"
~Javad Behboodian, October 1976.

"Identification of Parameters by the Distribution of a Maximum
Random Variable," T, W. Anderson and S.G. Ghurye, November 1976.

"Discrimination Between Statlonary Guassian Processes, Large Sample
Results,” Will Gersch, January 1977

"Principal Components in the Nonnormal Case: The Test for Spheric1ty,
Christine M. Waternaux; October 1977, '

"

"Nonnegative Definiteness of the Estimated Dispefsion Matrix in a

Multivariate Linear Model," F., Pukelsheim and George P.H. Styan, May 1978,



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFg%gDc‘gggfggggN;ORM
1. REPORT HUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOCG NUMBER
32

4. TITLE (and Subtitie) 5. TYPE OF REPORT & PERIOD COVERED
NONNEGATIVE DEFINITENESS OF THE ESTIMATED Technical Report
DISPERSION MATRIX IN A MULTIVARIATE LINEAR ST PERFORTN G SR REFORT NUMBER
MODEL

7. AUTHOR(s) 8. CONTRACT OR GRANYT NUMBER(s)
FRIEDRICH PUKELSHEIM and NOQOLL-T5-C-0Lk2

GEORGE P. H. STYAN

9. PERFCGRMING ORGANIZATION NAME AND AODDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
- L . s AREA & WORK UNIT NUMBEPRS
Department of Statistics
Stanford University (NR-0L2-03k)

Stanford, California

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research April 1978
Statistics & Probability Program Code 436 13, WUMBER OF PAGES
Arlington, Virginia 22217 8

12 MONITORING AGENCY NAME & ADDRESS(!f différent from Controlling Office) 15, SECURITY CLASS, (of thia rapori)

UNCLASSIFIED

18a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTIOM STATEMENT (cf this Report)

Approved for public release; distribution unlimited.

17. DISTRISUTION STATEMENT (of the sbatract satered in Block 20, if ditffarent feorm Report)

18. SUPPLEMENTARY NOTES
Tssued also as Technical Report No. 125 under National Science Foundation

Grant MPS 75-09L50 - Department of Statistics, Stanford University.

18. KEY WORDS (Continuec on reverse side i necossary and identify by block number)

MINQUE. Noniterative solution of likelihood egquations. Quadratic
subspaces. REML., Special Jordan algebra. UMVU. Uniqueness of
maximum likelihood estimate,

20, ABSTRACT '(Conéﬁr_me on roverss elde If necessary and identily by dlock number)
Estimation is considered in a model where both the mean vector and the

dispersion matrix have linear decompositions. It is shown that after an
invariance reduction with respect to mean translation, MINQUE provides a
nonnegative definite estimate of the dispersion matrix, when the decomposing
matrices span a quadratic subspace of symmetric matrices. With normality,
MINQUE is seen to equal the restricted maximum likelihood estimate and to

be of uniformly minimum variance.

M
DD G on5: 1473 Eoimion OF 1 NOV €8 15 OBSOLETE

S/N 0102-014~ 6601 | UNCLASSIFIED

SECURITY CLASSIFICATION GF THIS PAGE (When Date Bntored)



